Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis
نویسندگان
چکیده
Based on the combination of improved Local Mean Decomposition (LMD), Multi-scale Permutation Entropy (MPE) and Hidden Markov Model (HMM), the fault types of bearings are diagnosed. Improved LMD is proposed based on the self-similarity of roller bearing vibration signal by extending the right and left side of the original signal to suppress its edge effect. First, the vibration signals of the rolling bearing are decomposed into several product function (PF) components by improved LMD respectively. Then, the phase space reconstruction of the PF1 is carried out by using the mutual information (MI) method and the false nearest neighbor (FNN) method to calculate the delay time and the embedding dimension, and then the scale is set to obtain the MPE of PF1. After that, the MPE features of rolling bearings are extracted. Finally, the features of MPE are used as HMM training and diagnosis. The experimental results show that the proposed method can effectively identify the different faults of the rolling bearing.
منابع مشابه
Rolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition and Multi-Scale Permutation Entropy
This paper presents a rolling bearing fault diagnosis approach by integrating wavelet packet decomposition (WPD) with multi-scale permutation entropy (MPE). The approach uses MPE values of the sub-frequency band signals to identify faults appearing in rolling bearings. Specifically, vibration signals measured from a rolling bearing test system with different defect conditions are decomposed int...
متن کاملImproved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings
Abstract: A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal ...
متن کاملWeak Fault Diagnosis of Wind Turbine Gearboxes Based on MED-LMD
In view of the problem that the fault signal of the rolling bearing is weak and the fault feature is difficult to extract in the strong noise environment, a method based on minimum entropy deconvolution (MED) and local mean deconvolution (LMD) is proposed to extract the weak fault features of the rolling bearing. Through the analysis of the simulation signal, we find that LMD has many limitatio...
متن کاملRolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm
This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...
متن کاملMultifault Diagnosis for Rolling Element Bearings Based on Intrinsic Mode Permutation Entropy and Ensemble Optimal Extreme Learning Machine
This paper presented a novel procedure based on the ensemble empirical mode decomposition and extreme learning machine. Firstly, EEMD was utilized to decompose the vibration signals into a number of IMFs adaptively and the permutation entropy of each IMF was calculated to generate the fault feature matrix. Secondly, a new extreme learning machine was proposed by combining ensemble extreme learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017